Apache Spark Cookbook

Apache Spark Cookbook 1st Edition

Book Name : Apache Spark Cookbook

Edition : 1st Edition | | ISBN : 1785880101

Category : Programming & IT

Format / Pages : PDF - 358 Pages

Book Description

Apache Spark Cookbook pdf

Key Features

  • Use Apache Spark for data processing with these hands-on recipes
  • Implement end-to-end, large-scale data analysis better than ever before
  • Work with powerful libraries such as MLLib, SciPy, NumPy, and Pandas to gain insights from your data

Book Description

Spark has emerged as the most promising big data analytics engine for data science professionals. The true power and value of Apache Spark lies in its ability to execute data science tasks with speed and accuracy. Spark’s selling point is that it combines ETL, batch analytics, real-time stream analysis, machine learning, graph processing, and visualizations. It lets you tackle the complexities that come with raw unstructured data sets with ease.

This guide will get you comfortable and confident performing data science tasks with Spark. You will learn about implementations including distributed deep learning, numerical computing, and scalable machine learning. You will be shown effective solutions to problematic concepts in data science using Spark’s data science libraries such as MLLib, Pandas, NumPy, SciPy, and more. These simple and efficient recipes will show you how to implement algorithms and optimize your work.

What you will learn

  • Explore the topics of data mining, text mining, Natural Language Processing, information retrieval, and machine learning.
  • Solve real-world analytical problems with large data sets.
  • Address data science challenges with analytical tools on a distributed system like Spark (apt for iterative algorithms), which offers in-memory processing and more flexibility for data analysis at scale.
  • Get hands-on experience with algorithms like Classification, regression, and recommendation on real datasets using Spark MLLib package.
  • Learn about numerical and scientific computing using NumPy and SciPy on Spark.
  • Use Predictive Model Markup Language (PMML) in Spark for statistical data mining models.

About the Author

Padma Priya Chitturi is Analytics Lead at Fractal Analytics Pvt Ltd and has over five years of experience in Big Data processing. Currently, she is part of capability development at Fractal and responsible for solution development for analytical problems across multiple business domains at large scale. Prior to this, she worked for an Airlines product on a real-time processing platform serving one million user requests/sec at Amadeus Software Labs. She has worked on realizing large-scale deep networks (Jeffrey dean's work in Google brain) for image classification on the big data platform Spark. She works closely with Big Data technologies such as Spark, Storm, Cassandra and Hadoop. She was an open source contributor to Apache Storm.

Table of Contents

  1. Big Data Analytics with Spark
  2. Tricky Statistics with Spark
  3. Data Analysis with Spark
  4. Clustering, Classification, and Regression
  5. Working with Spark MLlib
  6. NLP with Spark
  7. Working with Sparkling Water - H2O
  8. Data Visualization with Spark
  9. Deep Learning on Spark
  10. Working with SparkR

Preview Apache Spark Cookbook Pdf

Preview eBook

Download Apache Spark Cookbook 1st Edition Pdf

This site comply with DMCA digital copyright. We do not store files not owned by us, or without the permission of the owner. We also do not have links that lead to sites DMCA copyright infringement.

If You feel that this book is belong to you and you want to unpublish it, Please Contact us .


Books For Same Author:

Spark for Data Science Cookbook



Read Also

Most Read

Networks of the Future Owls Guide to HTML & CSS Network Security Monitoring: Basics for Beginners Cyber Security for Beginners Fundamentals of Geomorphology Handbook of Research on Nanomaterials, Nanochemistry Learning Ceph Drupal 8 Development Cookbook

Last Added

Networks of the Future Owls Guide to HTML & CSS Network Security Monitoring: Basics for Beginners Cyber Security for Beginners Learning Ceph Drupal 8 Development Cookbook Security utility for Linux server Verilog HDL Design Examples Cocoa Programming for OS X: The Big Nerd Ranch Guide Darkweb Cyber Threat Intelligence Mining Python for R Users Programming with Microsoft Visual Basic 2017